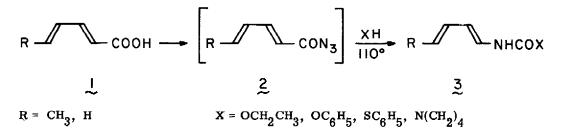
Tetrahedron Letters No. 36, pp 3089 - 3092, 1976. Pergamon Press. Printed in Great Britain.

N-ACYL-1-AMINO-1, 3-DIENES: 1-AMINO-1, 3-DIENE


SYNTHETIC EQUIVALENTS FOR THE DIELS-ALDER REACTION

Larry E. Overman,^{*1} Garry F. Taylor, and Peter J. Jessup Department of Chemistry, University of California Irvine, California 92717

(Received in USA 1 June 1976; received in UK for publication 26 July 1976)

There has been recent interest in the synthesis and Diels-Alder reactions of dienamides.^{2,3} The preparation of N-acyl-N-alkyl-1-amino-1,3-butadienes, and their application in synthesis <u>via</u> intramolecular Diels-Alder processes, has been impressively demonstrated by Oppolzer and coworkers.² A recent report from our laboratory described a versatile synthetic route to both N-trichloroacetyl-2-amino-1,3-dienes and N-trichloroacetyl-1-amino-1,3-dienes, and illustrated, in a preliminary fashion, their intermolecular Diels-Alder chemistry.³ Application of these latter dienes in synthesis was limited, however, by their moderate Diels-Alder reactivity, a property attributed to the strong electron withdrawing nature of the trichloroacetyl substituent.⁴

In this letter we report that a variety of crystalline N-acyl-1-amino-1, 3-dienes (3) can be prepared in synthetically useful yields by a modified Curtius sequence.⁵ Since these dienes are considerably more reactive than the corresponding trichloroacetyl derivatives, they should find application in synthesis.

Dienoic acids 1^6 were readily converted, <u>via</u> the mixed anhydrides,⁵ into the azide derivatives 2. The acyl azides were not isolated, but were extracted into toluene and added directly to a refluxing toluene solution containing a trapping reagent XH. Concentration, and filtration through silica gel afforded the pure, crystalline dienes 3^8 in overall yields of 44-80%

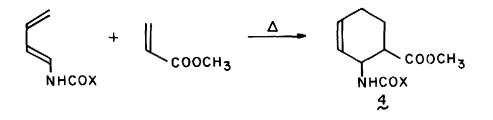

Diene (3)		Procedure ^a		T - 1 - 1 TT- 1 T AD.
	<u> </u>	Procedure	m.p. (⁰ C)	Isolated Yield (%
Сн ₃	осн ₂ сн ₃	Α	91- 92	80
н	OCH2CH3	А	44- 45	71 ^b
СН3	ос ₆ н ₅	Α	118-120	72
н	OC ₆ H ₅	B^{c}	118-119	66
		А		45
CH3	N(CH ₂) ₄	в	164-165	77
		А		(10) ^đ
н	$N(CH_2)_4$	в	163-164	44
CH3	sc ₆ н ₅	В	116-118	78
н	SC ₆ H ₅	В	92- 93	47

TABLE I. Synthesis of N-acyl-1-amino-1, 3-dienes¹⁶

^aIsocyanate trapped as formed at 110° (procedure A), or isocyanate pre-formed at 110° and trapped at 25° (procedure B); ^bMean yield of four preparations. All other table entries are nonoptimized yields of a single experiment; ^cA few drops of triethylamine were added; ^dEstimated by pmr.

(Table I).¹⁰ An alternate procedure (B), in which a solution of the isocyanate was pre-formed in toluene and cooled to 25° before the trapping agent was added, afforded higher yields in some cases. Since many dienoic acids are available from the Knoevenagel and related reactions,¹³ the procedure reported here should allow the preparation of a variety of N-acyl-1-amino-1, 3-dienes.

The Diels-Alder reactivities of dienes 3 vary markedly with the nature of the acyl substituent X. The previously reported³ trichloroacetamido-substituted diene 3 (R = H, X = CCl₃) reacts with methyl acrylate conveniently only at 140° (3 hr) to afford adduct 4

 $(X = CCl_3, \underline{cis/trans} = 3.5)$ in 82% yield.¹⁴ In contrast, the diencarbamate 3 (R = H, X = OCH₂CH₃) reacts within 2 hr at 110° (4, X = OCH₂CH₃, <u>cis/trans</u> = 5.4, 78%) and the dienurea 3 (R = H, X = N(CH₂)₄) reacts within 8 hr at 80° (4, X = N(CH₂)₄, <u>cis/trans</u> >6, 80%).¹⁴ It should be noted that both the latter two dienes react with methyl acrylate faster and more regioselectively than <u>trans-2</u>, 4-pentadienoic acid (110°, 15 hrs, 85%), ^{14, 15} and thus an alternate synthetic sequence, in which the Curtius rearrangement is accomplished after cycloaddition, is less attractive. A detailed study of the Diels-Alder reactivity and stereoselectivity of these dienes will be published in due course.

The following procedure is representative:

Ethyl trans-1, 3-butadiene-1-carbamate (3, R = H, $X = OCH_2CH_3$). A solution of ethyl chloroformate (11.9 g, 0.11 mol) in 40 ml of acetone was added dropwise to a stirred solution of trans-2, 4-pentadienoic acid⁶ (8.33 g, 85 mmol), triethylamine (10.2 g, 0.10 mol), and 50 ml of acetone at 0° . After 30 min, a solution of sodium azide (8.45 g, 0.13 mol) and 30 ml of water was added dropwise while maintaining the temperature below 10° . After 1 hr, the reaction mixture was poured into ice-water (~200 ml), extracted three times with 60 ml of toluene, and the toluene solution dried $(MgSO_4)$ for 30 min. The azide solution, containing 25 ml of absolute ethanol (0.43 mol), was then added dropwise over 1 hr to 100 ml of refluxing toluene which contained ca. 50 mg of 4-tert-butylcatechol. Reflux was continued for ca. 1 hr after the addition was complete, at which time the azide ir band (2120 cm^{-1}) had disappeared. After cooling to room temperature the solution was concentrated to afford ca. 11 g of a yellow, semi-solid material. Purification by chromatography (silica gel, 10:1 hexane:ether) and recrystallization (hexane-ether) afforded 7.1 - 10.8 g (60 - 91%) of pure, white crystalline carbamate: mp 44-45°, ν_{max} (nujol) 3360, 1695, 1665, and 1530 cm⁻¹; pmr (CDCl₃, δ) 4.7 - 7.2 (complex m, vinylic and NH), 4.15 (q, J = 7Hz, OCH₂), and 1.25 (t, J = 7Hz, CH₃); cmr (CDCl₃, & TMS) 154.1, 134.8, 127.6, 113.2, 112.1, 61.7, and 14.5; mass spec (m/e) 141.0787 (calc 141.0789).

Acknowledgement. The support of the National Science Foundation (GP-38634X), the National Institutes of Health (NS-12389), and the Sloan Foundation is gratefully acknowledged.

References and Notes

- 1. Alfred P. Sloan Foundation Fellow, 1975-77.
- W. Oppolzer and W. Fröstl, <u>Helv. Chim. Acta</u>, <u>58</u>, 587, 590 (1975); W. Oppolzer, W. Fröstl, and H. P. Weber, ibid., <u>58</u>, 593 (1975).
- 3. L. E. Overman and L. A. Clizbe, J. Amer. Chem. Soc., 98, 2352 (1976).
- 4. Only Diels-Alder reactions of normal electron demand are considered.
- 5. J. Weinstock, J. Org. Chem., 26, 3511 (1961).
- 6. <u>Trans, trans-2, 4-hexadienoic</u> (sorbic) acid is commercially available. Trans-2, 4pentadienoic acid was prepared as described,⁷ and stored at -20°.
- R. G. Glushkov and O. Y. Magidson, <u>Med. Prom. SSSR</u>, <u>16</u>, 27 (1962); <u>Chem. Abstr.</u>, <u>58</u>, 442c (1963).
- In contrast to the corresponding N, N-dialkyldienamines,⁹ N-acyldienamines 3 are easily handled, reasonably stable, crystalline materials. They have been stored at -20° for up to two weeks without detectable decomposition.
- 9. S. Hunig and H. Kahanek, Chem. Ber., 90, 238 (1957).
- 10. To our knowledge no carbamate or urea derivatives of butadiene have appeared in the literature. The conversion of 1, 3-pentadienyl isocyanate to the benzyl urea 3 (R = CH₃, $X = NHCH_2C_6H_5$),¹¹ and the conversion of <u>trans</u>, <u>trans-2</u>, 4-hexadienamide, under Hoffmann conditions (NaOCI/CH₃OH), to the methyl carbamate 3 (R = CH₃, $X = OCH_3$)¹² have been reported.
- F. Tanimoto, T. Tanaka, H. Kitano, and K. Fukui, <u>Bull. Chem. Soc. Jap.</u>, <u>39</u>, 1922 (1966).
- V. B. Mochalin, I. S. Varpakhovskaya, and O. P. Beletskaya, <u>J. Org. Chem. USSR</u>, 10, 1556 (1974).
- 13. "Houben-Weyl," 4th Ed., Vol. 5/1C, Thieme Verlag, Stuttgart, Germany, 1970, pp 519-555.
- 14. All Diels-Alder reactions were conducted under identical conditions in sealed ampules: diene (1 mmol), methyl acrylate (3 mmol), dioxane (1 ml), and 4-<u>tert</u>-butylcatechol (<u>ca</u>. 10 mg). Isomer ratios were determined by hplc analysis after the crude reaction mixture was filtered through a short silica gel column.
- 15. Four adducts were apparent by hplc analysis after esterification (CH_2N_2) . The major isomer was formed to the extent of 65%.
- 16. Satisfactory infrared, nmr, and mass spectra were obtained for all new compounds.